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Separation of a boundary jet in a rotating fluid 
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A semi-infinite jet flows along a vertical wall in a rotating fluid, with the nose of the 
intrusion approaching a corner where the wall turns through an obtuse angle 
8+180". The jet separates a t  the corner and flows into the interior if 8 exceeds a 
critical 8,, otherwise part of the jet continues around the corner and flows along the 
downstream segment of the wall. The separation criterion is computed using an 
inviscid and piecewise-uniform-vorticity model, with s denoting the ratio of the 
maximum ' offshore ' to ' inshore ' vorticity. The separation effect is demonstrated by 
a laboratory experiment in which a two-dimensional jet flows along the wall from a 
source. Average velocities are used to estimate s, and to make semi-quantitative 
comparisons of experimental and theoretical 6,. This suggests that the separation 
mechanism is independent of local viscous forces, although the cumulative effect of 
lateral eddy stresses in the jet is important in establishing the value of s immediately 
upstream from the corner. We suggest that our barotropic separation mechanism is 
relevant to  mesoscale oceanic coastal currents. 

1. Introduction 
In  a rapidly rotating homogeneous fluid it is possible to realize two-dimensional 

flows at large Reynolds number. A striking example of this occurs when a horizontal 
jet from a nozzle emerges at  mid-depth in a tank of water rotating about a vertical 
axis (Flied, Stern & Whitehead 1983). The three-dimensional turbulence of the 
emerging jet is suppressed downstream, where a depth-independent regime is 
established. A similar effect occurs when the nozzle is placed against a vertical wall, 
in which case a two-dimensional (but non-laminar) jet appears further downstream. 
The simple technique will be employed to demonstrate the unique kind of separation 
that can occur when a barotropic jet flows along a curved wall. 

This is illustrated by the top view (figure 1, plate 1) of a 2 m diameter tank 
rotating counterclockwise, and containing 20 cm of water with a blue dye. The water 
emerging from the nozzles contains a black dye, and the jet becomes two-dimensional 
(see $6) well before the nose of the intrusion reaches the corner of the vertical wall, 
a t  which point the wall turns clockwise through an acute angle 9. Lateral instabilities 
and entrainment occur before the jet reaches the corner and the concomitant lateral 
eddy stresses determine the velocity profile in this region. When the nose reaches the 
corner (figure 1 )  i t  does not flow around it, but rather forms a dipolar vortex which 
propagates into the interior, and thereby establishes the path for the trailing jet. 

This separation effect is not merely a simple consequence of the forward 
momentum of the jet, as is proven by the non-separating flow in figure 2 (plate 2), 
where all the conditions are the same as in figure 1 except that 8 is reduced by half. 
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The white streaklines clearly show the flow of the jet around the corner. The black 
dye indicates both thc progression of the wall jet further downstream, and also the 
large eddy which formed after the nose of the jet encountered the corner. 

A horizontally non-divergent flow in an inviscid rotating fluid conserves relative 
vorticity (thereby giving rise to the paradox that the Coriolis parameter is 
parametrically unimportant for the temporal evolution of a given initial state, even 
though the rapid rotation is crucial for vorticity conservation). We shall use this two- 
dimensional theory to obtain an explanation of the separation process (figure l ) ,  and 
a semi-quantitative prediction of a critical 13 = Bc. In  addition, we shall employ a 
piecewise-uniform vorticity model of a semi-infinite wall jet, with s denoting the 
magnitude of the ‘offshore ’1‘ inshore ’ vorticity ratio. These positive and negative 
vorticity layers are separated by an interface (subsequently designated 1 = l) ,  and 
another interface (1 = 2) separates the outer layer of the jet from an irrotational 
region of semi-infinite extent. The two interfaces intersect the wall a t  a common 
nosepoint, which advances into the irrotational fluid and thereby displaces this fluid 
up, over, and behind the nose (cf. the streaklines in figures 1 ,  2). 

The evolution of 1 = 1 , 2  will be computed by a conformal mapping of the contour 
dynamical equations. starting from an assumed initial state which is chosen to isolate 
the (local) separation process and to avoid the problem of the evolution of the jet 
from its source. This larger problem requires a consideration of the two-dimensional 
instability of a wall jet, and the subsequent entrainment of irrotational fluid. To 
some extent these effects are parameterized in our theory by the value of s assumed 
for the inviscid jet, Although the fluid in our theory is free to  slip a t  the wall, i t  is 
obviously desirable to assume vanishing wall velocity far upstream in the 
undisturbed region of our semi-infinite jet, since this assumption incorporates an 
important feature of a real boundary jet. In order to focus on the separation 
mechanism we shall restrict the initial position of the nosepoint to lie a t  a rather 
small distance upstream from the corner. Although our emphasis is on the physical 
mechanism rather than a definitive quantitative separation criterion, evidence will 
be presented showing that the assumed structure of the initial state is not of over- 
riding importance. 

The mechanism by which our jet separates is different from the two-dimensional 
(and low Reynolds number ) flow of a free stream around a curved wall (Smith 1986; 
Dennis & Chang 1970), where the adverse pressure gradient produced by the free 
stream, acting in conjunction with the local viscous force in the boundary layer, 
generates vorticity of the opposite sign from that existing upstream. I n  our problem 
there is no free stream (and no viscosity), but vorticity of both signs exists in the jet 
upstream from the separation point. In  this case flow separation is produced by the 
inviscid effect of wall curvature on the vortex elements in the two-dimensional jet. 

The basic fluid dynamical problem treated herein may be useful in studying 
oceanic coastal flows, where high-Reynolds-number and quasi- two-dimensional flows 
prevail, even though other physical factors like buoyancy enter. For example, Shen’s 
(1981) laboratory experiments show that when density effects are important the 
interface between two fluids can be displaced vertically until it intersects a horizontal 
boundary, whereupon the flow can separate from the vertical wall. A similar effect 
may occur in the Gulf Stream (Parsons 1969; Ou & de Ritter 1986). Our purely 
barotropic process may be more directly relevant to somewhat smaller scales, such 
as occurs in the vicinity of capes and straits (Roed 1980). 
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FIGURE 1. Top view of a jet (black) flowing from small nozzles mounted flush against a vertical wall and into 
ambient water (blue) in a tank rotating with period T=15.1 s. The water depth is 20 cm, the nozzle flow rate 
is Q=14.3 cm3/s and the nozzles are located 70 cm upstream from the corner of the wall, whose downstream 
segment turns through a clockwise angle 6’=604 A 1 s time exposure has been used to obtain the streaks of 
the small white paper pellets on the free surface. (a) t=16 s after the nozzle flow starts. Note the streaks in 
the blue water which reveal the irrotational velocity in the ambient fluid as it is pushed up and over the nose 
of the jet. Counterclockwise vorticity exists in the outer part of the black dye, clockwise vorticity exists in 
the inner part, and the downcoast velocity u is non-negative everywhere near the wall. (b) t=22 s. As the 
nose encounters the corner small negative u appears downstream from the comer. (c) t=28 s. A small region 
of clockwise circulation, detached from the wall, forms downstream of the corner. (d) t=40 s. This clockwise 
circulation on the inside of the jet increases in strength and combines with the large counterclockwise 
circulating region on the outside to form a dipole. Behind this dipole, relatively large u occurs in the current 
at the corner. (e) t=55 s. The dipole continues propagating into the interior and the jet at the comer continues 
to separate. The small amount of black dye downstream from the corner retreats, and no particles from the 
jet flow along the downstream wall at later times. Two-dimensional eddies are generated by the sep,arated 
jet, which also forms a large and relatively weak recirculation gyre. This supplies the water entrained by the 
jet before it reaches the corner. 

STERN & WHITEHEAD (Facing p.  42) 
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FIGURE 2. Same as figure 1 except f3=30°. This smaller f3 produces a non-separating flow which continues 
along the downstream segment of the wall. Please note that the first frame listed below is presented out of 
its normal time sequence for purposes of emphasis and clarity. (a) t=48 s. This frame most clearly reveals 
the difference between the separating and non-separating regimes. At this time a strong wall current 
( u X )  exists at and downstream from the corner. This is accompanied by a large counterclockwise offshore 
eddy, but there is no clockwise circulation region corresponding to that in figure 1. (b) t=l5 s. This 
photograph, and the two following ones show the shape of the jet prior to (a). (b) is indistinguishable from 
figure l(a). (c) t=24 s. This state is also not different from figure l(b). (d) t=36 s. This is the state before 
(a) (above) and it shows the black dye of the coastal current proceeding past the comer. (e) t=84 s. Notice 
that the large counterclockwise eddy has moved parallel to the coast, and strong downstream currents still 
occur at the corner, along with patches of dye left behind by the large eddy. 

STERN & WHITEHEAD 
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2. Elementary considerations 
Since a jet consists of many vortices of opposite sign, it is instructive to consider 

first the conditions under which a dipole, composed of equal and opposite point 
vortices displaced from each other by a distance r(t), will separate from the wall by 
moving to infinity as time ( t )  increases. In the simplest case (Acton 1976) the wall is 
completely straight, and its upward normal is rotated through a clockwise angle e( t )  
from the upward normal to the dipole axis. Suppose the counterclockwise circulating 
member of the dipole is closer to the wall than the clockwise member. Then for any 
e ( 0 )  > 0 there exists a sufficiently small g(0) such that the dipole will eventually move 
to an infinite distance from the wall (i.e. ‘separate’), because the mutual interaction 
of the vortices in the dipole exceeds the effect of their images. 

For the case of irregular boundaries (see Sheffield’s 1957 calculation of the 
separation of a monopolar point vortex emerging from the end of a channel) we 
consider figure 3, which generalizes Acton’s problem by having a corner in the wall 
a t  g = 0 (in the complex plane), and with {z+( t ) ,  z-(t)} denoting the complex 
coordinates of the two vorticies. An appropriate and instructive initial condition in 
the context of our continuum problem (see $3) is: z+(O) = i, ~ ( 0 )  = i+ia(O). For any 
a: > 1, and for a(0) sufficiently small, it is once again clear that the mutual 
interaction of the vortices will dominate over wall-induced motion, and the dipole 
will move coherently to 161 = co. The critical (a,a(O)) for this separation was 
computed using a conformal mapping, and the results are indicated in the Appendix. 

The next instructive problem is provided by the stream function produced by a 
point vortex outside a circular wall. We know from potential theory that this 
boundary may be replaced by the vortex image located at the ‘inverse’ point, which 
is located nearer to the circumference than the vortex. Therefore the maximum 
tangential speed a t  the circular wall increases as the wall curvature increases, 
provided the distance of the vortex from the wall remains constant. 

Let us apply this result to the qualitative determination of the motion of the 
nosepoint of a jet (figure 4 a )  flowing around a smoothly curving wall. The clockwise 
(negative) vortex in each area element of the outer part of the jet induces a 
downstream velocity a t  the nosepoint, whereas each anticlockwise (positive) element 
in the inner part (wall side) tends to move the nosepoint upstream. Although both 
tendencies increase with wall curvature, the latter one will dominate if the positive 
layer is sufficiently thick and if the negative vortices are relatively far from the nose. 
On the other hand, if the positive layer is entirely removed (s = 0) then the resulting 
half-jet with negative vorticity cannot separate from the wall, and the nosepoint 
must continue moving down the coast no matter how large its curvature. Thus we see 
that a sufficiently large s will cause the fluid near the nosepoint to stagnate (or even 
move upstream), while the fluid near the axis of the jet tends to continue downstream 
(figure 4b) .  Consequently the oncoming positive vorticity in the jet leaves the coast, 
flows offshore, and forms a ‘positive’ eddy near the leading edge of the jet. As the 
area and total vorticity of this eddy increase, it deflects the overlying negative- 
vorticity fluid from its downstream path, causing some of this fluid to reverse 
direction by flowing upstream and to be entrained into the positive eddy. The next 
phase (figure 4c)  depends on the wall curvature being sufficiently large, and its 
enhancement of the positive eddy sufficiently great, so that the ambient irrotational 
fluid is also entrained. If this occurs then no particle on either side of the jet axis 
makes contact with the wall downstream from the separation point. Consequently 
the negative vorticity in the upstream fluid must also pile-up, thereby forming a 
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FIGURE 3. A cyclonic point vortex is located a t  z+( t )  in the complex plane, and an anticyclonic point 
vortex is located a t  z- ( t ) .  Initially z+(O) = i, zJ0) = [1+ a(O)] i, and the question is what values of 
a, a(0) lead to the dipole separating from the curved wall. 

negative eddy over the positive one. At this stage of our qualitative argument the 
leading edge of the jet consists of a dipole a t  such a large distance from the wall that 
the mutual interaction will propel the dipole further away from the wall (as 
suggested by figure 3 and by the Appendix). 

This qualitative picture will be supported ($3) by inviscid calculations for a 
piecewise-uniform-vorticity jet flowing towards a ‘sharp ’ coast (cf. figure 5 a ) ,  which 
has all the curvature concentrated at one point. The velocity is singular here, but 
integrable, and the streamline pattern produced by a vortex element is qualitatively 
similar to what would be produced a t  a smoother wall. Thus the sharp coast model 
in $ 3  is the simplest one, and this is also the case for the experiment (96) since it 
involves fewer independent non-dimensional parameters than a smoothly curving 
coast. 

Our calculations utilize the well-known contour-dynamics method to compute the 
evolution of two interfaces bounding three piecewise-uniform-vorticity domains, two 
in the jet and one in the ambient irrotational fluid. A novel feature arises because of 
the spatial inhomogeneity of the Green’s function for the velocity produced by an 
elementary vortex in the presence of an irregular boundary, since this prevents us 
from reducing the two-dimensional evolutionary problem to a one-dimensional 
problem (for the contours). Instead, the Green’s function must be numerically 
integrated across the stream as well as along the stream, in order to obtain the 
instantaneous velocity of Lagrangian points on each interface. Nevertheless the 
contour-dynamical method is still relatively efficient and useful for several reasons, 
not the least of which is the ability to focus on the purely inertial character of the 
separation in the absence of viscosity. (NB, Please excuse the different orientation of 
the jet in figure 1 and in the following theory, where it makes no difference which way 
the jet flows). 

3. Contour dynamics for a jet on a bent coast 
The outer interface (denoted by 1 = 2 in figure 5 )  separates the ambient irrotational 

fluid from the negative-vorticity layer of the jet, which has unit non-dimensional 
thickness a t  xp = CO, and a non-dimensional vorticity equal to - 1.  Below the lower 
interface ( I  = 1 )  of this layer there is a positive layer having vorticity l/s and 
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FIGURE 4. Schematic diagram of the separation process for a jet intruding into an irrotational 
fluid along a curved wall (see text). 

thickness 5 a t  xp = co. In general the fluid may slip at  the walls, but for previously 
mentioned reasons we choose the undisturbed jet profile such that u,(co, 0) = 0, as 
in figure 5.  Far upstream the maximum jet velocity equals unity, and the scale for 
non-dimensional time t is the reciprocal of the vorticity below 1 = 2. For t > 0 the 
common nosepoint a t  yp = 0 will move leftwards in the complex 'physical' space 
(figure 5 a )  approaching the corner zp = x,+iyp = 0, (2n: > arg zp 2 0). 

The complex velocity up+ivp is obtained by summing the contributions of the 
vorticity elements in the area dt, dy,, located a t  Cp = 5, + iyp. This element produces 
a velocity field with vanishing normal velocity on the wall and vanishing velocity a t  
yp = co. It is convenient to express the total vorticity field as the sum of two 
overlapping layers, each of which is bounded below by the wall. The first layer is 
upper-bounded by interface 1 = 2, and is assigned vorticity - 1 ; the second layer is 
upper-bounded by 1 = 1,  and is assigned vorticity (1 + l/s), so that the join of the two 
layers yields a net vorticity l/s below 1 = 1. 
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Let the stream function be such that its xp derivative equals +up. If an overbar 
is used to denote a complex-conjugate then the typical area element of the first field 
will produce a contribution to the total stream function given by the imaginary part 
of 

( 3 . 1 ~ )  
1 - 

[ln(z/b:-C/b:)-ln(xfl-~~)I, P =  ;, 

because x{ is (negative) real on the downstream half (xP < 0) of the wall, and thus the 
imaginary part of (3.1 a)  vanishes everywhere on the wall. Furthermore (3.1 a)  
vanishes at yp + CO. and as zp + cp we obtain the limit 

which implies t,hat the imaginary part of (3.1 a )  is the stream function produced by 
a vorticity equal to ( -  1) inside dgp dvp. Likewise 

(3.16) 

is the stream function produced by a typical area element of the second field. The 
sum of the integrals of (3 . la ,b)  gives the complex velocity potential a t  xp, and the 
derivatives of this function of zp gives the negative conjugate of the complex 
velocity. i.e. 

1 1 
- (up + iv,) = iP( 1 + l/s) dg, dy, z{-l(- - - 

2.n 

where 1 = 2 indicates that t,he integration extends over the entire area bounded by 
that interface. From now on zp will denote a Lagrangian point on an interface, so that 

dz 
up+ivp = 2 

dt 
(3.2b) 

and thus we obtain two integro-differential equations for Lagrangian points on 1 = 

1 and 1 = 2. 
It  is more convenient to perform the integrations (3.2a) in the conformally 

mapped space of figure 5 ( b ) ,  wherein the wall is straight (but the mapped interface 
far upstream are no longer straight). The mapped space coordinates have no 
subscript and are denoted by 

< = [ + i s = c $ ,  z = x + i y = $  P' 

and the inverse relations are 
cp = p ,  xp = xu. 

By introducing the Jacobean transformation 
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(b) a1 w 

6 = g + i v = < c  
z = y + i y = z {  

p =  lJa 

FIGURE 5. Definitional diagram of a piecewise-uniform-vorticity jet flowing towards the corner 
(6 = 0) of the wall. (a )  Physical space with (up, wp) denoting the velocity components at zg = zp +iy,. 
( 6 )  The conformal mapping straightens the boundary and distorts the interfaces. 

and by using 

in (3.2) we get 

where c = 2(a- 1) .  
(3.4) 

This is to be computed for all Lagrangian points z = z(I, k) on the lower (k = 1 )  
interface and on the upper (k = 2) interface, thereby obtaining 21k ordinary 
equations for the (approximate) temporal evolution of these interfaces in mapped 
space. 

We note that as the nosepoint passes the corner ( z  = 0), (3.4) has an integrable 
singularity. For any other position of the nosepoint (Im ( z )  = 0) both integrands in 
(3.3) are pure negative imaginary numbers (Im (5) > 0)' so that the contribution of the 
1 = 1 integral to the nose velocity is positive, and the contribution of the 1 = 2 
integral is negative. Thus the negative vortices in the jet tend to move the nose 
downstream (past the corner), whereas the positive vortices tend to move the 
nosepoint upstream thereby blocking the oncoming flow. If the former effect 
dominates, such as will occur when s = 0, then no 'separation' will occur. But when 
s and a are sufficiently large the positive vortices should control the nose velocity 
near the corner point, and separation should occur. 

For a point on k = 1 in (3.4) the 1 = 2 integration encounters an interior singularity 
which poses a numerical problem. This was resolved by introducing the identities; 

When { + z  =!= 0 the last term in the first of these equations approaches the Jinite 
limit : 

lZIC - 151" lim- = -ic(zle-21m ( z )  (c < 2, lzl > 0) 
2-5 2-t: 
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and only a simple pole appears in the remaining term of the first identity. When these 
identities are used in (3.4), we may write the result as 

(3.5) 
1 1 dz(17 'I - [A(I ,  k )  +B(I, k ) ]  +% [P(I,  k )  - T( I ,  k ) ] ,  dt 27r 

(3 .6b )  

have non-singular integrands, and where 

(3.7a) 

(3.7 b)  

can be integrated in 7, thereby reducing them to single contour integrals. When a! = 
1, c = 0, A(I,  k) = B(I, k) = 0, and (3.7) with (3.5) give the velocity for a jet flow along 
a straight coast (Stern 1989). Thus we may appropriate the algorithm tested and used 
in that paper for evaluating P - T when c + 0. The only modification is due to the 
subsequent truncation of the integrals a t  finite x, which requires a correction for the 
effect of the far field (x-t  a). These and other details of the numerical calculation are 
discussed below, but the reader may prefer to skip to $4. 

The computation of (3.6a, b )  requires an 7-integration a t  each 6, which was done 
by dividing the ordinate under each interfacial point into a number of segments 
(increasing with the value of the ordinate) of equal height, and then using a 
trapezoidal approximation. Another trapezoidal approximation was then used for 
the (-integration, which was generally truncated a t  xp = 10.2. The region beyond this 
is called the far field or the 'wings', the region 8.2 < xp < 10.2 is called the 
'intermediate' field, and xp < 8.2 is the 'near' field. 

To the truncated near-field value ofA(I, k )  +B(I,  k) must be added the contribution 
W(I, k) of the far field, which was computed by assuming undisturbed far-field 
interfaces. Then in the W integrands we set [(t) equal to the mapping of yp = s or 
yp = 1 +s,  and the resulting integrals yields the asymptotic (for lzpl/tp 4 1) result : 

where MV(1) denotes the integral index of the last Lagrangian point (G, - xi) on I = 

1,2.  (This expression is asymptotically valid when G, -+ co with z = z (1 ,  k )  fixed, and 
the only reason for retaining the term Iz/G,IC was to ensure that W(I ,  k )  = 0 when 
c = 0). A similar procedure was used to augment the truncated value of P(I ,  k )  - T(I ,  
k )  with the far-field contribution. 

These asymptotic wing corrections are not valid in the intermediate field, and 
consequently points in the latter region were merely moved in mapped space in such 
a way that their velocity in physical space was equal to that which was computed for 
the last near-field point (i.e. the one a t  xp x 8.2). The validity of this joining 
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procedure was checked by examining the smoothness of the computed interfaces 
(this is a good test because of the inherent instability of a jet to small perturbations). 
Furthermore, the main region of interest is in the vicinity of z = 0, and in the limited 
time interval when separation occurs. 

Now we turn to the question of choosing the initial conditions in such a way that 
our highly idealized model will be able to capture the more complex separation effect 
which occurs in the realization ($6). First, the initial position of our nosepoint should 
be reasonably near xp = 1, for otherwise (if xp 9 1) we should be focusing on the 
different problem (cf. figure 6) of flow over a straight coast, in which other eddy 
effects occur. Secondly, the leading edge of the intrusion should have significant and 
comparable amounts of total positive and negative vorticity in the nose region of the 
intruding jet. This corresponds to the structure of the real jet as it approaches the 
corner, and we previously agreed that it was reasonable to assume this structure in 
the initial conditions of our problem. 

When the common nosepoint of the interfaces approaches 6 = 0, the corresponding 
values of A ,  B become very large (although the velocity singularity is integrable in 
time). The numerical problem that this poses was resolved by a simple smoothing 
procedure, such that when lz(1,k)l was less than some preassigned small value 
(e.g. 0.025). The value of Ix(1,k)l" in the denominator of (3 .6a ,b)  was reset to 
Im [ x ( l ,  k ) ]  = 0.025 (keeping Re [ Z ( I ,  k ) ]  unaltered). This has the effect of reducing 
the magnitude of the horizontal velocity of the nosepoint (only) when it is near the 
corner, but it does not alter the velocity a t  any overlying Lagrangian point (if 
Im ( x )  > 0.025). 

The temporal change of the z-points was computed using a second-order 
Runge-Kutta integration with a time step T = 0.1 (except in one comparison case 
where T = 0.05). After each T ,  Lagrangian points were inserted or deleted, depending 
on whether neighbour separation was too large or too small. The spacing of points 
was designed to  maintain a nominal 1 %  accuracy in the computed velocity (see 
Stern 1989 where analytical comparison are given). 

4. Numerical results for limiting cases 
First we consider a jet intruding along a straight coast (a: = l),  in which case we 

set c = 0 = A(I,  k) = B(I ,  k). A single short computation for this case has been given 
by Stern (1989) (in the context of the problem of vorticity frontogenesis) using the 
initial ' sharp nose ' interfacial ordinates : 

s ( l - e x p [ - 2 ( ~ ~ - 1 ) ] ) ,  x 3 1, I = 1, 
(4.1) Y p ( X '  = { ( 1 + s) ( 1 - exp [ - 2( xp - b ) ] ) ,  x 2 b, I = 2 ,  

and with b =+ 1 (non-coincident nosepoints). A comparison of results was made to 
check the numerical program for (3.5),  and then we made the small modification for 
the common (b  = 1) nosepoint condition used here. Some discussion of the results for 
this case is necessary for understanding the a =+ 1 problem. 

Figure 6 shows that for s = 0.50 the maximum ordinate of I = 2 is much larger 
than its value at t = 0 (equation (4.1)). This is due to the dominant influence of the 
(nearby) negative vortices on particles a t  the nose of I = 2, so that a net upward 
motion is produced there. As negative vorticity accumulates under 1 = 2,  downward 
velocities are induced in the rear of the bulbous nose. This results in a trough on 
I = 2, which eventually evolves into a thin filament (figure 6) carrying irrotational 
fluid into the nose. There is also a very thin (and dynamically negligible) filament 
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FIGURE 6. The contour dynamical calculation a t  t = 20 for a straight boundary (a = 1) for 8 = 0.50, 
and for the ‘sharp nose’ initial condition (4.1). At t = 0 the nosepoint was a t  z = 1 (note vertical 
exaggeration). A large negative eddy is in the process of forming between the upper interface ( I  = 
2 )  and the lower one (1 = 1). In  this and all subsequent figures the subscript p on z and y has been 
discarded. Also note the thin filament from I = 1 which has been ‘captured’ and passively advected 
along the leading edge of 1 = 2. 

from 1 = 1 which is almost coincident with the 1 = 2 nose, but the main part of the 
leading edge of 1 = 1 has been displaced away from 1 = 1. This important effect is due 
to the dominant influence of the positive vortices lying underneath 1 = 1. The 
downstream motion of the leading edge of the entire intrusion is therefore mainly 
determined by the negative vorticity in the 1 = 2 nose. 

Since the sharp-nose initial condition is not very realistic, and since i t  produces the 
computationally undesirable feature of the very thin I = 1 filament, we proceeded to 
use the ‘ blunt< nose ’ profile : 

s(1-exp[-2(xp-b)$, x 3 b,  1 = 1, 
Yp(x’0)=(( l+s) ( l -exp[-2(x ,h)~] ) ,  x >  b ,  1 = 2 .  

(4.2) 

When s = 0.25, b = 1 ,  figure 7 ( a )  shows the evolution a t  t = 16, and a t  t = 26 (not 
shown) the trough in I = 2 continues to turn clockwise until it almost reaches the 
leading edge of 1 = 2, thereby tending to detach a negative eddy from the underlying 
boundary current. When s is increased to s = 0.5 (figure 7 b )  the result is similar 
except that the maximum on 1 = 1 is larger, and consequently the underlying 
positive vortices cause the leading edge of 1 = 1 to be displaced further away from 
1 = 2. Kotice that the common nosepoint is being over-run by the leading edge 
(minimum x) of the 1 = 2 interface. This effect would have been much more severe 
had we not automatically deleted a nosepoint when it  was excessively over-run by 
the I = 1 interface. These deleted segments were so close to the boundary that 
negligible fluid areas and vorticies were involved. 

These calculations delimit an endpoint (a: = 1) of the parametric regime, in which 
the boundary current propagates continually along the coast, and in all cases the 
speed of the leading edge of the intrusion was greater than 0.3. The figures also 
indicate the tendency for a negative nose eddy to form above the main boundary 
current. 
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FIGURE 7. The evolution of the blunt nose (4.2), t = 16: (a)  s = 0.25, ( b )  s = 0.50. 

Next we consider a > 1 in the s = 0 limit, corresponding to  a half-jet having only 
negative vorticity between a single interface and the curved wall. Our previous 
qualitative remarks indicated that in this case separation from the boundary could 
not occur for any a,  but it is important to do the computation for this case because 
the full algorithm (with B(I,  k) + 0) is utilized for the first time. The number of 
segments used in the 7-integration (equation (3.6)) increased from five to ten as the 
local value of the ordinate of the interface increased (preliminary runs doubling the 
number of segments gave insignificant changes). For the single interface the initial 
shape used (corresponding to (4.2)) was yp(x, 0) = 1 -exp [ -2(x- 1)”. When a = a (a 
45’ coastal deflection) the boundary current (figure 8a)  and the nose eddy flow 
around the corner, and continue down the coast as expected. (Remember that the 
velocity is not zero in the irrotational fluid immediately outside the nose eddy.) A 
qualitatively similar result was obtained (figure 8b) when a was increased to a = $, 
and at t = 36 there were 218 points on the interface. 
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FIGURE 8. Flow of a half-jet (s = 0) around the corner of a wall: (a )  a = i, t = 28; ( 6 )  a = i, 
t = 36. 

The upper set of curves in figure 9 show the distance along the coast from the 
corner to the nose when a = and when a = g. The slope of the reference line labelled 
‘speed = t ’ corresponds to a nose velocity equal to the mean upstream velocity of the 
jet, and thus we see that the noses in figure 8 are almost moving with this mean 
speed. Similar speeds were obtained by Stern & Pratt (1985) for a straight coast. 

The difference between the two curves (‘area ’, ‘ c area ’) in the lower half of figure 
9 gives an indication of the error in the numerical calculation. ‘Area ’ is the integrated 
ordinate under the interface (in the truncated domain) minus the area of a reference 
rectangle of unit height extending from the corner (xp = 0) to infinity. ‘C  area ’ is the 
corresponding area obtained from the mass conservation principle by integrating in 
time the known flux at xp = 00. 
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FIGURE 9. The two upper curves give the displacement of the nosepoint along the coast for the runs 
in figure 8. The final propagation speed is slightly less than !. The two lower curves give two 
independent calculations of the non-dimensional area bounded by the interface in figure 8(a). (See 
text.) 

t 

5. The full jet with a > 1 
The initial conditions for the following runs are given by (4.2) with b = 1. For a 

small 0 = a- 1 = 18" and a small s = 0.25 (figure 1Oa) we obtain the expected non- 
separated flow a t  t = 17,  in which the leading edge of the intrusion flows around the 
corner and continues along the downstream half of the coast. As previously 
mentioned, this progression of the leading edge reflects the dominant influence of the 
negative vorticity in the outer half of the jet. Except for the trough on 1 = 2 near 
x = 0, there were no noteworthy features in the full numerical domain (x < 10.2). The 
subscript p has been dropped here, and in all that follows. 

By increasing the thickness of the positive layer to s = 0.33 (figure l o b )  t,here is an 
increase in the downward and upstream velocities on the leading edge of 1 = 1, and 
this accounts for its large displacement from the leading edge of I = 2. Nevertheless, 
the current does not separate, and the velocity vectors (not shown) on 1 = 1 at 
t = 11.1 are all directed downstream and downcoast. 

The effect of increasing the value of 0 used in figure 10 ( a )  is shown in figure 10 (c). 
The leading edge (I = 2) of the intrusion at t = 15.1 still propagates downcoast with 
u = -0.33 at x = -3.4, but there is a marked difference in the behaviour of the 
leading edge of 1 = 1. The larger a produces a larger upstream velocity of positive- 
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FIGURE 10. The flow of il. full jet around the corner for the initial conditions (4.2). No vertical 
exaggeration. (a) a = 1.1 (or 0 = 18'), s = 0.25, t = 17; ( b )  a = 1.1, s = 0.33, t = 11.1; (c) 8 = 36", 
s = 0.25, t = 15.1. The I = 1 interface starts at  the common nosepoint (z = -3.4) and goes to (z = 
0.5, y = 0+) along a line which is indistinguishable from the wall. The interface then winds 
counterclockwise into the eddy, and then clockwise out. The interface continues clockwise to the 
endpoint z = 10.2. 

vorticity particles near the corner, the result of which causes the leading edge of the 
1 = 1 interface to  stagnate, and thus the fluid (under 2 = I) further upstream flows 
into a large positive 'wake' eddy. The common nosepoint is a t  x = -3.4, and the 
I = 1 interface is almost coincident with the wall from this point to x x 0.5, after 
which it winds into, and then out of the positive eddy. This winding effect started 
at t = 8.1, when the leading edge of E = 1 had a simple shape similar to  the one in 
figure 10(b) .  At later times (figure 1Oc) we see that  the positive eddy entrains a small 
amount of negative-vorticity fluid in the winding. 

Increasing s to 0.33 (figure l l a )  increases this entrainment. At t = 16.2 the 
nominal nosepoint has actually retrogressed upstream to the corner ! To all intents 
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FIGURE 11. (a)  0 = 36", s = 0.333, t = 16.2. The 1 = 2 interface begins at the common nosepoint 
(z = 0-), follows the I = 1 interface for a short interval, and then comes back towards the wall. It then 
proceeds to the minimum z along a line which is indistinguishable from the wall, and then 2 = 2 
turns clockwise. The E = 1 interface starts at the corner and winds into the eddy. ( b )  0 = 5 2 . 2 O ,  
8 = 0.25, t = 14.1. 

and purposes, however, we may say that further downstream there is a different 
nosepoint for 1 = 2, for example at x = -2.8 where the distance of the interface from 
the wall is only 10W, and the x-component of velocity is u = -0.37. Note the very 
small wedge of irrotational fluid at the corner which is also being entrained into the 
eddy. Although one may say that a positive-vorticity eddy has detached from the 
wall, the entire current has not separated, because a portion of it has continued to 
flow along the downstream part of the wall. Thus if all of the rotational fluid in the 
jet at  t = 0 had been coloured (as in our laboratory experiment), then some of this 
coloured fluid would appear along the downstream half of the wall a t  t = 16.2 (figure 
l la) .  

When the value of 0 used in figure lO(c) is increased further the positive eddy is 
displaced further from the wall, as indicated in figure 11 ( b )  for 19 = 52.2", s = 0.25. 
At t = 15.1 (not shown) the common nosepoint is at  x = - 1.89 where u = -0.20. We 
also note that considerably more negative vorticity is being entrained in this case 
than in any of the previous ones. 

Before proceeding to examples of 'separation' it is necessary to have an 
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FIGURE 12. Definition diagram for separation. See text. 

operational definition of it, especially because our calculations are of limited 
temporal extent. The sketch (figure 12) of a separated flow shows irrotational fluid 
between the wall and the eddy, so that none of the previously mentioned coloured 
fluid flows along the wall downstream from the corner. At the minimum point on 
I = 1 the coordinates are (xe,ya), the horizontal velocity is u,, and the minimum 
separation of the vortical fluid from the coast is denoted by A .  We say that the jet 
separates if (at the last time of our integration) u, > 0, and A > 0 is increasing with 
time. No separation occurs if u, < 0 and Ix, Itan 8- I yal is very small compared to Iy,!, 
i.e. A is virtually zero. 

A clear example of a separated jet, in which all the previously stated conditions are 
satisfied, occurs for s = 0.5, a = 1.29 (figure 13a). It seems likely that for t 9 15.1 the 
trough on I = 2 (near x = 0.5)  will continue to amplify and approach the I = 1 
interface, whereupon irrotational fluid will wind into a negative-vorticity eddy at the 
leading edge of the jet, thereby forming a dipolar structure (see figure 16b below). 
The elementary calculation in the Appendix (figure 3) suggests that the dipole will 
continue to increase its distance from the wall as time increases. (A numerical 
calculation of this would have to employ contour ‘surgery’ on the windings in the 
eddy, with due regard for the entrainment effects.) 

A similar result is obtained (figure 13b) when the coastal angle is reduced to 45”. 
Figure 13(c) shows the separation for a smaller s and a larger 8. We then keep s = 

0.33 constant and reduce 8 successively (figure 14a, b ) ,  thereby approaching the 
transitional regime. 

Figure 15 shows that for a large s = 1.0 only a small 0 is required for separation, 
and there is a relatively large flow reversal which penetrates upstream from the 
corner. This suggests that under certain circumstances the point of separation a t  a 
smooth coast may be located a t  a considerable distance upstream from the maximum 
wall curvature. 

The effect of changing the initial condition from a ‘blunt’ nose intrusion to a 
‘sharp’ nose intrusion (i.e. equation (4.1) with b = 1) is indicated in figure 16(a) for 
the case s = 0.5, a = 1.25. At the earlier time t = 10 the nosepoint had advanced to 
x = - 1.26 with u, = -0.10, but a rapid retrogression of the nosepoint began at t z 
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FIGURE 13. Example of separation: (a) 8 = 52.2", s = 0.5, t = 15.1. The nosepoint is near r = 0. 
( 6 )  e = 450, s = 0.5, t = 15.1. ( c )  e = 600, s = 0.333, t = 15.2. 
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FIGURE 14. The approach to the transitional regime s = 0.333: (a )  6' = 52.2', t = 14.7. 
(b)  6 = 45", t = 14.2. 

y = - - 1 . 0  

FIGURE 15. 6' = 30", s = 1.0, t = 12.1. Note that separation here occurs upstream of the 
' curved ' part of the boundary. 
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FIGURE 16. These runs show that a change in shape of the initial interfaces does not greatly alter the 
separation criterion: ( a )  using (4.1) with 0 = 4 5 O ,  s = 0.5, t = 16; (6) using the bulbous nose 
(4.2)-(4.3) with s = 0.5, a = 1.25, t = 11 ; (c) the bulbous nose with 8 = 0.25, a = 1.25, t = 13. 

14. At t = 16 the nosepoint velocity is u = +0.16, u, > 0, and thus we see that the 
conditions for separation are satisfied. In fact, the result is quite similar to the blunt- 
nose result in figure 13(b) ,  which has the same s, a. As in figure 9 we computed the 
rate of increase in area beneath 1 = 2 in two different ways (one from the numerical 
results and the other from the conservation of mass) and found a discrepancy of 
lo%, most of which could be explained by the small finite vertical velocity in the 
vicinity of the x = 10.2 endpoint. 

A few calculations were also made to examine the effects of changing the initial 
I FLM 217 
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FIGURE 17. Regime diagram. Circled points indicate numerical runs in which the jet separated from 
t,he boundary. Points x indicate non-separated flows. Points surrounded by a square are for (4.3). 
The solid circle is for (4.1). 

condition from the ‘blunt’ nose one in (4.2) to a more ‘bulbous’ one. Accordingly 
(4.2) was multiplied by 

I 
I 

+ 1 + (x-212 (4.3) 

so that yp(x, 0) reaches its maximum value a t  x z 2, and then decreases slowly until 
the asymptotic ordinate (8 or ( l+s) )  is reached. The bulbous-nose calculation for 
s = 0.5, cr. = 1.25, t = 11 (figure 16b) shows a pronounced dipole a t  the leading edge of 
the separated jet. The thin filament of irrotational fluid intruding into the negative- 
vorticity region is the result of the evolution of the 1 = 2 trough (cf. figure 13c). When 
s is reduced to  s = 0.25, with a = -1.25 held at the same value, we see (figure 16c) that 
no separation occurs, and the bulbous 1 = 2 nose of the jet proceeds downstream 
ahead of the wake eddy (I = 1) .  The common nosepoint on the wall is at x % 2.5. A 
similar result was obtained for s = 0.25, 01 = 1.666 (not shown). 

The regime diagram for all runs is given in figure 1 7 :  x symbols indicate jets 
which do not separate, and circles indicate separation. The ‘sharp’ nose initial 
condition corresponds to the solid circle, and the bulbous nose initial condition 
corresponds to  points surrounded by a square. Not shown on this diagram are all the 
a = 0 runs in which separation did not occur, and all the s = 0 runs in which 
separation also did not occur. The reader can easily visualize a curve running from 
the lower right corner to the upper left corner of the diagram, which delimits the 
separating/non-separating flows. 

For later reference we note (figure 17) that  the critical a, which delimits the 
separating from the non-separating flows, is a = 1.27f0.02 a t  s = 0.33. 
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FIGURE 18. Top view of a dyed jet which flows from a source (at the bottom) and separates from 
the wall a t  the corner point. The parameters for this run are 8 = 50" and QF = 28.5 c.g.s., where 
T is the rotation period of the tank. Photographs are 1 min. apart, starting a t  top left and ending 
a t  bottom right. The distance of the nozzle from the corner (35 cm) and Q are half the values used 
in figure 1. 

6. Experiment 
I n  these preliminary experiments the simplest technique was used to produce a 

wall jet. Accordingly three horizontal nozzles (4.76 ern long and 0.14 cm diameter) 
were mounted flush against the sheet metal wall a t  depths of 6, 10, and 14 ern in 
water 20 cm deep. The nozzles were soldered to  a manifold connected to  a flowmeter 
and a pump in a reservoir. Because of the complexity of the evolving flow from the 
source, we decided to keep the nozzles a t  a fixed distance (35.2 em) from the corner 
in all the quantitative runs discussed in this section and plotted in figure 21. (This 
distance is half that used in the illustrative run in figures 1 and 2.) Despite the three- 
dimensionality of the flow emerging from the nozzles, a depth-independent flow was 

3-2 
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FIGURE 19. Top view of a dyed jet which flows from a source around the yorner without separating 
at, that point (see text). The parameters for this run are 0 = 30" and &Ti = 28.5 .  Photographs are 
1 min.  apart. The white dots in the photographs are floating pellets of cardboard. 

realized 15 cm downstream from the nozzle. This was indicated hy unmistakable 
vertical dye columns ('Taylor Inkwalls '), and confirmed by the velocity measure- 
ments to be discussed. At the corner of the wall there was a flexible joint which 
allowed the downstream part to be set a t  any (clockwise) angle 8 relative to the 
upstream part. 

In  the separating flow shown in figure 18 the value of Q (as well as the distance of 
the nozzle from the corner) is half the value used in figure 1, and 8 is 10" smaller (but 
the rotation period T is the same). The state of the coastal current before the nose 
reaches the corner is qualitatively similar to the early times in figure 1 .  

The early phases of the non-separating flow shown in figure 19 are similar to those 
in figure 2 ,  the main difference being that the large anticlockwise eddy which forms 
when the nose encounters thc corncr behaves somewhat differently with respect to 
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FIGURE 20. Four experiments with a jet along a straight wall. Each photograph is taken 5 min. 
after the start of the run. Starting at  the top the flow rates in cc s-l are 2.6,4.2,5.1 and 6.1. In each 
case the wall jet stagnates, and the oncoming fluid is ejected into the interior. But this kind of 
‘separation ’ occurs ‘far ’ downstream (where cumulative entrainment and friction become 
important), and it  should be distinguished from the separation occurring in figure 19. 

the jet flowing past the corner. As the jet continues along the downstream half of the 
wall, instabilities develop, irrotational fluid is entrained, the nose slows down, and 
fluid is then ejected normal to the wall. The same effects occur for a straight wall, as 
shown by the four different runs in figure 20. (See the similar effect in the density 
current in Stern, Whitehead & Hua 1982.) Although this kind of separation (over 
large x, t intervals) is interesting and worthy of further study, it must be clearly 
differentiated from that which occurs a t  the corner. According to our criterion 
‘separation’ occurs if no dye flows along the wall downstream from the corner. 

The difference between a separating and a non-separating flow was always clear 
cut, reproducible, and easy to map in the regime diagram (figure 21). Aside from 8 
only the source flow and rotation period were varied in these runs, and a critical 
19, = 45”+5” is suggested for Q@ larger than - 20 c.g.s. The ordinate in figure 21 is 
proportional to the Rossby number of the jet divided by the square root of the 
Ekman number, this being the ratio of inertial to bottom friction terms in the 
vorticity equation. In  order to  non-dimensionalize the ordinate we need the jet 
width, but the estimates of this given later are not adequate for exploring the full 
parametric regime, so that we cannot say that the Rossby and Ekman numbers form 
the complete non-dimensional group. There is also a lateral Reynolds number 
&/(depthxviscosity). Although this is not as large as we would like, there is no 
systematic dependence on it (table 1) .  Some variability of 8, in figure 21 is suggested 
a t  the smallest values of Q @ ,  but this is certainly not definitive. 

Velocity measurements in the jet were obtained in separate runs using a straight 
wall Neutrally buoyant pellets ( - 0.5 mm) were injected near the nozzle, and streak 
photographs were taken one minute after startup a t  a distance 20-30 cm downstream 
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FIGURE 21. Regime diagram showing separation (S) or non-separation (N) of the jet as a 
function of 0, Q. T for a fixed nozzle position. 

Run 
number 

6294 
761 
762 
763 
764 
77 1 
772 
773 
774 
775 
79 1 
792 

7101 
7102 
7 103 
7104 
7105 
7106 
7108 
7109 

7 1010 

TABLE 1. Summary of experiments with a corner 

T 
(9) 

15.1 
15.1 
15.1 
15.1 
15.1 
15.15 
15.15 
15.15 
15.15 
15.15 
62.7 
inf. 

64.01 
15.07 
29.5 
29.5 
29.5 
15.76 
15.76 
15.37 
15.37 

Q 
(cc/s) 

7.32 
7.32 
7.32 
7.32 
7.32 
2.58 

16.25 
2.58 

16.25 
2.58 
2.58 
2.58 
2.58 

16.25 
16.25 
16.25 
16.25 
5.67 

10.8 
5.67 

10.8 

0 

60 28.4 
0 28.4 

30 28.4 
40 28.4 
50 28.4 
50 10.0 
50 63.2 
40 10.0 
40 63.2 
30 10.0 
30 20.4 
30 inf. 
30 20.8 
30 62.9 
30 88.3 
40 88.3 
50 88.3 
50 22.5 
50 42.9 
40 22.2 
40 42.3 

(cieg.1 Q$ Result 

Separation 
Non-separation 
Non-separation 
Non-separation 
Separation 
Separation 
Separation 
Separation 
Non-separation 
Separation 
Non-separation 
Different regime 
Non-separation 
Non-separation 
Non-separation 
Non-separation 
Separation 
Separation 
Separation 
Non-separation 
Non-separation 
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(this position is slightly upstream of the corner in the separation runs). Pellets in the 
5-15 em depth range were illuminated from the side and photographed from above 
using a 1 s exposure every 2 s. The maximum velocity was 5 cm/s, and the main 
errors due to parallax, pellet size, and digitizing were estimated to total less than 
10 %. From these observations we were also able to  ascertain the depth independence 
of the velocities. 

The measurements for four values of Q@ are shown by the open squares in figure 
22(a-d). The large amount of scatter is due to x,t-variations caused by the two- 
dimensional waves and eddies in the jet. (But regions of the flow containing very large 
and visually obvious eddies at the outer edge of the jet were (subjectively) excluded 
from the sample.) The solid points drawn in these figures were obtained using 
running mean values of the individual measurements. From these curves a crude 
estimate of a theoretical s was made by visually fitting a triangular profile to the 
mean curve, with a bias towards capturing the extreme values of vorticity in the 
outer and inner regions of the jet. (It is believed that these values, rather than the 
associated geometrical connotation of s in the theoretical model, are the significant 
physical parameters.) In  this way we arrived a t  a mean s x 0.3 with perhaps a factor 
of two uncertainty. This s-value and the experimental 8, = 45' f 5' are consistent 
with the theoretical value 8, = 1.27k0.02 rad. = 49', for s = 0.33, but the extent of 
the quantitative agreement must be regarded as fortuitous. 

7. Conclusion 
An inviscid piecewise-uniform vorticity model has been used to examine the flow 

of a barotropic jet around a sharply curved wall. For a given ratio s of the magnitude 
of the 'offshore ' vorticity to the 'inshore ' vorticity, the jet will separate a t  the corner 
if 8 exceeds a critical angle (figure 17) .  The onset of this process (figure 13) is 
characterized by the formation of a dipole vortex at the leading edge of the jet, when 
it  reaches the corner. The upstream jet then flows into this dipole, which also entrains 
ambient irrotational water. Although our contour-dynamical calculations are limited 
in time, it is strongly suggested that the dipole propagates into the interior basin, and 
thereby establishes a permanently separating jet a t  the corner. For non-separating 
conditions, on the other hand, the main part of the upstream jet turns the corner and 
continues flowing along the coast (figure 10). The transition from the non-separated 
to the separated regime is illustrated by figure 11 (a, b ) ,  in which a cyclonic wake 
vortex forms in the lee of the curved coast. The vortex may eventually be carried 
downstream by the current in which it is embedded, and then the process may 
repeat. 

Although the Coriolis parameter does not enter explicitly into this theory, the 
basic rotation in the laboratory experiment has the crucial effect of suppressing 
three-dimensional turbulence, and giving rise to a two-dimensional flow. In  our 
exploratory experiments the source geometry was kept constant, the flow rate Q was 
varied, as were the rotation rate and the corner angle 8. Except for relatively small 
Q we found that the critical 6 for separation was 45Of5'. From velocity 
measurements we estimated the value of s, computed 8, from the piecewise-uniform 
vorticity model, and found consistency with the observed OC. The theory (figure 17) 
indicates that the critical 8 should decrease as s increases, and this might partially 
explain the decrease of 8, in figure 21 as Q decreases. The observed qualitative nature 
of the onset of separation (figure 1) is also consistent with the bulbous-nose 
calculations in figure 16 ( b ) .  The qualitative discussion of the inviscid separation 
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FIGURE 2 2 ( a , b ) .  For caption see facing page. 

mechanism in figure 4 indicates that similar effect should occur when a high- 
Reynolds-number jet flows along a smoothly curving boundary. 
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FIGURE 22. Ensembles of downstream velocity measurements in the jet for four different runs (see 
text) (a) &Ti = 10.0, the solid cyme is a 41 point running mean; (6) Q& = 15.5 solid poiyts give 
a 21 point running mean; ( c )  &Ti = 22, solid points give an 11 point running mean; (d )  QF = 28.8 
solid points give an 11 point running mean. 

Appendix. Separation of dipolar point vortices 
We compute here the conditions necessary for a dipolar point vortex (figure 3) to 

separate from a bent wall by moving to  infinite distances from it. This elementary 
problem not only provides insight into the numerical calculations of $5, but 
supplements these by suggesting the evolution of the latter over a longer timespan. 

We recall (cf. ( 3 . 1 ~ ) )  that the complex function 
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is analytic for 27c > arg 5 >, 0 except a t  the locations of the positive vortex 6 = z+( t )  
and the negative vortex 6 = z-(t). If Q denotes a point on either half of the bent 
wall then C{ = #" is either a real positive number or a real negative number 
[(eina)l/= = - 11, so that c{ equals its complex-conjugate (denoted by a bar). Therefore 
the imaginary part of F([) is a stream function, vanishing on the bent wall, vanishing 
a t  IQI = 00,  and satisfying Laplace's equation (except a t  z+, 2-). Moreover dF/d< has 
an imaginary part equal to the x-component of the stream function, and a negative 
part equal to the y-derivative of the stream function. Therefore -cW/d{ is the 
complex velocity vector associated with the stream function. Finally we note that 
the limit of the first logarithmic term in F(5)  as c+z+ is ln1[-z+l+ ..., so that the 
circulation about z+ is + 1, and the circulation about z- is - 1. Thus - dF/d[ gives 
the velocity vectors produced by the point vortices having unit circulation. 

In  order to compute the velocity with which the vortex a t  z+ moves we must 
average -@Id[ in a small circle surrounding z+, which is equivalent to discarding 
the term containing the pole [(z-z+)-'] in the Laurent expansion. Thus we get 

and the bracketed term becomes 

- 1 1 + (p  - 1) 2;1(6- z+) + . . . -- p z y  + p(p - 1) z ! y (  6 - z+) + . . . 
pZf--'(c- z+) + $(p- 1) Z y (  5- z+)Z + . . . 5- 2, p - 1 -  1 +-z+l(<- 2 z+) 

= (-)+E+ 1 ... 
5-2 ,  22, 

We now discard the term in parenthesis since it has zero average around a circle 
surrounding z+, and thus we get 

- _ _  
zP-' za-1+ p-1  

- - +---+T. 
2rt dz+ 
ip dt za+-za+ $-Z za+-z! 22+p 

Likewise, for the motion of the anticyclonic point vortex we get 

- +--- - .  27tdz- Za-1 F 
i$ dt d - z f  z!-zB, z!!-z!! 22-/3 

- 
zt-1 p -  1 

P 

- - 

By using Z+ = C", Z- =A", --t = T ,  
27c 

The above equations simplify to 
1 1--a 

~ 1 1 -+-+-I 
C-C C-A C - A  2C ' 

_ -  dC 

+--- 
I 

dA 
d7 A - C  6 - C  A - A  2A * 

1 " - 

For the initial conditions stated in the caption of figure 3 we have 

C(0) = eai/la, A ( 0 )  = (1 +v)'%7(0). 

For a = 1.25 the temporal integration showed both vortices remaining together 
and moving away from the boundary (separating) when a(0) < 2.85. This critical 
distance increased to 3.75 for 01 = 1.5. 
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